8 класс Химия 2021-2022 учебный год Планируемые результаты изучения химии

шипальное Теремоний ВЕРНА ВЕРНА СА ПРЕМОНИЕ В ТИ Терехова

Предметные результаты

В результате изучения учебного предмета «Химия» в 8 классе ученик научится:

- называть химические элементы и характеризовать их на основе положения в Периодической системе;
- формулировать изученные понятия: вещество, химический элемент, атом, молекула, ион, катион, анион, простое и сложное вещество, химическая реакция, виды химических реакций и т. п.;
- определять по формулам состав неорганических веществ, указывать валентности атомов химических элементов или степени их окисления;
 - разъяснять информацию, которую несут химические знаки, формулы и уравнения;
- классифицировать простые (металлы, неметаллы, благородные газы) и сложные вещества (бинарные соединения, в том числе и оксиды, а также гидроксиды кислоты, основания и соли);
- формулировать Периодический закон, объяснять структуру и информацию, которую несет Периодическая система химических элементов Д. И. Менделеева, раскрывать значение Периодического закона;
- характеризовать строение вещества виды химических связей и типы кристаллических решеток;
- описывать строение атомов химических элементов № 1—20 и отображать их с помощью схем;
- составлять формулы оксидов химических элементов и соответствующих им гидроксидов;
- записывать структурные формулы молекулярных соединений и формульные единицы ионных соединений по валентности, степеням окисления или зарядам ионов;
- формулировать основные законы химии постоянства состава веществ молекулярного строения, сохранения массы веществ, закон Авогадро;
- формулировать основные положения атомно-молекулярного учения и теории электролитической диссоциации;
 - определять признаки, условия протекания и прекращения химических реакций;
- составлять молекулярные уравнения химических реакций, подтверждающих общие химические свойства основных классов неорганических веществ и отражающих связи между классами соединений;
- составлять уравнения реакций с участием электролитов в молекулярном и ионном видах;
- определять по химическим уравнениям принадлежность реакций к определенному типу или виду;
- составлять уравнения окислительно-восстановительных реакций с помощью метода электронного баланса;
- применять понятия «окисление» и «восстановление» для характеристики химических свойств веществ;
- объяснять многообразие простых веществ явлением аллотропии и указывать ее причины;
- производить химические расчеты с использованием понятий «массовая доля вещества в смеси», «количество вещества», «молярный объем» по формулам и уравнениям реакций;
- выполнять обозначенные в программе эксперименты, распознавать неорганические вещества по соответствующим признакам;
 - соблюдать правила безопасной работы в химическом кабинете (лаборатории).

B результате изучения учебного предмета «Химия» в 8 классе ученик получит возможность:

- характеризовать основные методы познания химических объектов: наблюдение, измерение, эксперимент, моделирование;
 - различать химические объекты (в статике):
 - химические элементы и простые вещества;
 - металлы и неметаллы и характеризовать относительность принадлежности таких объектов к той или иной группе;
 - неорганические соединения;
 - гидроксиды (кислородсодержащие кислоты, основания);
 - оксиды несолеобразующие и солеобразующие (кислотные, основные);
 - валентность и степень окисления;
 - систематические и тривиальные термины химической номенклатуры;
 - знаковую систему в химии (знаки и формулы, индексы и коэффициенты, структурные и молекулярные формулы, молекулярные и ионные уравнения реакций, полные и сокращенные ионные уравнения реакций, термохимические уравнения, обозначения степени окисления и заряда иона в формуле химического соединения);
 - различать химические объекты (в динамике):
 - физические и химические стороны процессов растворения и диссоциации;
 - окислительно-восстановительные реакции и реакции обмена;
 - схемы и уравнения химических реакций;
 - соотносить:
 - экзотермические реакции и реакции горения;
 - каталитические и ферментативные реакции;
 - металл, основный оксид, основание, соль;
 - неметалл, кислотный оксид, кислота, соль;
 - строение атома, вид химической связи, тип кристаллической решетки и физические свойства вещества;
 - выдвигать и экспериментально проверять гипотезы о химических свойствах веществ на основе их состава и строения и принадлежности к определенному классу (группе) веществ;
 - прогнозировать способность вещества проявлять окислительные или восстановительные свойства с учетом степеней окисления элементов, входящих в его состав, а также продуктов соответствующих окислительно-восстановительных реакций;
 - составлять уравнения реакций с участием типичных окислителей и восстановителей на основе электронного баланса;
 - определять возможность протекания химических реакций на основе электрохимического ряда напряжений металлов, ряда электроотрицательности неметаллов, таблицы растворимости и с учетом условий их проведения;
 - проводить расчеты по химическим формулам и уравнениям:
 - для вывода формулы соединения по массовым долям элементов;
 - по приготовлению раствора с использованием кристаллогидратов;
- по нахождению доли выхода продукта реакции по отношению к теоретически возможному;
- с использованием правила Гей-Люссака об объемных отношениях газов;
- с использованием понятий «кмоль», «ммоль», «число Авогадро»;
- по термохимическим уравнениям реакции;
- проводить химический эксперимент с неукоснительным соблюдением правил техники безопасности:
- по установлению качественного и количественного состава соединения;

- при выполнении исследовательского проекта;
- в домашних условиях;
- использовать приобретенные ключевые компетенции для выполнения проектов и учебно-исследовательских задач по изучению свойств, способов получения и распознания веществ;
- определять источники химической информации, представлять список информационных ресурсов, в том числе и на иностранном языке, готовить информационный продукт и презентовать его;
- объективно оценивать информацию о веществах и химических процессах, критически относиться к псевдонаучной информации, недобросовестной рекламе в средствах массовой информации;
 - создавать модели и схемы для решения учебных и познавательных задач.

Личностные результаты

- чувство гордости за российскую химическую науку, гуманизм, отношение к труду, целеустремленность, самоконтроль и самооценка;
 - готовность к осознанному выбору дальнейшей образовательной траектории;
 - мотивация учения, умение управлять своей познавательной деятельностью.

Метапредметные результаты

- владение универсальными естественно-научными способами деятельности: наблюдение, измерение, эксперимент, учебное исследование; применение основных методов познания (системно-информационный анализ, моделирование) для изучения различных сторон окружающей действительности;
- использование универсальных способов деятельности по решению проблем и основных интеллектуальных операций: формулирование гипотез, анализ и синтез, сравнение, обобщение, систематизация, выявление причинно-следственных связей, поиск аналогов;
- умение генерировать идеи и определять средства, необходимые для их реализации;
- умение определять цели и задачи деятельности, выбирать средства реализации цели и применять их на практике;
 - использование различных источников для получения химической информации.

Содержание учебного предмета

Введение.

Предмет химии. Методы познания в химии: наблюдение, эксперимент, моделирование. Источники химической информации, ее получение, анализ и представление его результатов.

Понятие о химическом элементе и формах его существования: свободных атомах, простых и сложных веществах.

Превращения веществ. Отличие химических реакций от физических явлений. Роль химии в жизни человека. Хемофилия и хемофобия.

Краткие сведения из истории возникновения и развития химии. Роль отечественных ученых в становлении химической науки - работы М. В. Ломоносова, А. М. Бутлерова, Д. И. Менделеева.

Химическая символика. Знаки химических элементов и происхождение их названий. Химические формулы. Индексы и коэффициенты. Относительные атомная и молекулярная массы. Проведение расчетов массовой доли химического элемента в веществе на основе его формулы.

Периодическая система химических элементов Д. И. Менделеева, ее структура: малые и большие периоды, группы и подгруппы. Периодическая система как справочное пособие для получения сведений о химических элементах.

Демонстрации. 1.Модели (шаростержневые и Стюарта-Бриглеба) различных простых и сложных веществ. 2. Коллекция стеклянной химической посуды. 3. Коллекция материалов и изделий из них на основе алюминия. 4. Взаимодействие мрамора с кислотой и помутнение известковой воды.

Лабораторные опыты. 1. Сравнение свойств твердых кристаллических веществ и растворов. 2. Сравнение скорости испарения воды, одеколона и этилового спирта с фильтровальной бумаги.

Тема 1. Атомы химических элементов.

Атомы как форма существования химических элементов. Основные сведения о строении атомов. Доказательства сложности строения атомов. Опыты Резерфорда. Планетарная модель строения атома.

Состав атомных ядер: протоны, нейтроны. Относительная атомная масса. Взаимосвязь понятий «протон», «нейтрон», «относительная атомная масса».

Изменение числа протонов в ядре атома - образование новых химических элементов.

Изменение числа нейтронов в ядре атома — образование изотопов. Современное определение понятия «химический элемент». Изотопы как разновидности атомов одного химического элемента.

Электроны. Строение электронных уровней атомов химических элементов малых периодов. Понятие о завершенном электронном уровне.

Периодическая система химических элементов Д. И. Менделеева и строение атомов - физический смысл порядкового номера элемента, номера группы, номера периода.

Изменение числа электронов на внешнем электронном уровне атома химического элемента - образование положительных и отрицательных ионов. Ионы, образованные атомами металлов и неметаллов. Причины изменения металлических и неметаллических свойств в периодах и группах. Образование бинарных соединений. Понятие об ионной связи. Схемы образования ионной связи. Взаимодействие атомов элементов — неметаллов между собой - образование двухатомных молекул простых веществ. Ковалентная неполярная химическая связь. Электронные и структурные формулы.

Взаимодействие атомов неметаллов между собой — образование бинарных соединений неметаллов. Электроотрицательность. Ковалентная полярная связь. Понятие о валентности как свойстве атомов образовывать ковалентные химические связи. Составление формул бинарных соединений по валентности. Нахождение валентности по формуле бинарного соединения.

Взаимодействие атомов металлов между собой – образование металлических кристаллов. Понятие о металлической связи.

Демонстрации. Модели атомов химических элементов. Периодическая система химических элементов Д. И. Менделеева (различные формы).

Лабораторные опыты. 3. Моделирование принципа действия сканирующего микроскопа.4. Изготовление моделей молекул бинарных соединений. 5. Изготовление модели, иллюстрирующей свойства металлической связи.

Тема 2. Простые вещества.

Положение металлов и неметаллов в Периодической системе химических элементов Д. И. Менделеева. Важнейшие простые вещества — металлы (железо, алюминий, кальций, магний, натрий, калий). Общие физические свойства металлов.

Важнейшие простые вещества – неметаллы, образованные атомами кислорода, водорода, азота, серы, фосфора, углерода. Молекулы простых веществ – неметаллов – водорода, кислорода, азота, галогенов. Относительная молекулярная масса.

Способность атомов химических элементов к образованию нескольких простых веществ — аллотропия. Аллотропные модификации кислорода, фосфора, олова. Металлические и неметаллические свойства простых веществ. Относительность этого понятия.

Число Авогадро. Количество вещества. Моль. Молярная масса. Молярный объем газообразных веществ. Кратные единицы измерения количества вещества — миллимоль и киломоль, миллимолярная и киломолярная массы вещества, миллимолярный и киломолярный объемы газообразных веществ.

Расчеты с использованием понятий «количество вещества», «молярная масса», «молярный объем газов», «постоянная Авогадро».

Демонстрации. Получение озона. Образцы белого и серого олова, белого и красного фосфора. Некоторые металлы и неметаллы количеством вещества 1 моль. Молярный объем газообразных веществ.

Лабораторные опыты. 6.Ознакомление с коллекцией металлов. 7. Ознакомление с коллекцией неметаллов.

Тема 3. Соединения химических элементов.

Степень окисления. Сравнение степени окисления и валентности. Определение степени окисления элементов в бинарных соединениях. Составление формул бинарных соединений, общий способ их называния.

Бинарные соединения металлов и неметаллов: оксиды, хлориды, сульфиды и пр. Составление их формул.

Бинарные соединения неметаллов: оксиды, летучие водородные соединения, их состав и названия. Представители оксидов: вода, углекислый газ, негашеная известь. Представители летучих водородных соединений: хлороводород и аммиак.

Основания, их состав и названия. Растворимость оснований в воде. Представители щелочей: гидроксиды натрия, калия и кальция. Понятие об индикаторах и качественных реакциях.

Кислоты, их состав и названия. Классификация кислот. Представители кислот: серная, соляная, азотная. Понятие о шкале кислотности (шкала рН). Изменение окраски индикаторов.

Соли как производные кислот и оснований, их состав и названия. Растворимость солей в воде. Представители солей: хлорид натрия, карбонат и фосфат кальция.

Аморфные и кристаллические вещества.

Межмолекулярные взаимодействия. Типы кристаллических решеток. Зависимость свойств веществ от типов кристаллических решеток.

. Чистые вещества и смеси. Примеры жидких, твердых и газообразных смесей. Свойства чистых веществ и смесей. Их состав. Массовая и объемная доли компонента смеси. Расчеты, связанные с использованием понятия «доля».

Демонстрации. Образцы оксидов, кислот, оснований и солей. Модели кристаллических решеток хлорида натрия, алмаза, оксида углерода (IV). Кислотно-щелочные индикаторы, изменение их окраски в различных средах. Универсальный индикатор и изменение его окраски в различных средах. Шкала рН.

Лабораторные опыты. 8. Ознакомление с коллекцией оксидов. 9. Ознакомление со свойствами аммиака. 10. Качественная реакция на углекислый газ. 11. Определение рН растворов кислоты, щелочи и воды. 12. Определение рН лимонного и яблочного соков на срезе плодов. 13. Ознакомление с коллекцией солей. 14. Ознакомление с коллекцией веществ с разным типом кристаллической решетки. Изготовление моделей кристаллических решеток. 15. Ознакомление с образцом горной породы.

Тема 4. Изменения, происходящие с веществами.

Понятие явлений, связанных с изменениями, происходящими с веществом. Явления, связанные с изменением кристаллического строения вещества при постоянном его составе, - физические явления. Физические явления в химии: дистилляция, кристаллизация, выпаривание и возгонка веществ, фильтрование и центрифугирование.

Явления, связанные с изменением состава вещества, - химические реакции. Признаки и условия протекания химических реакций. Выделение теплоты и света – реакции горения. Понятие об экзо- и эндотермических реакциях.

Закон сохранения массы веществ. Химические уравнения. Значение индексов и коэффициентов. Составление уравнений химических реакций.

Расчеты по химическим уравнениям. Решение задач на нахождение количества вещества, массы или объема продукта реакции по количеству вещества, массе или объему исходного вещества. Расчеты с использованием понятия «доля», когда исходное вещество дано в виде раствора с заданной массовой долей растворенного вещества или содержит определенную долю примесей.

Реакции разложения. Представление о скорости химических реакций. Катализаторы. Ферменты. Реакции соединения. Каталитические и некаталитические реакции, обратимые и необратимые реакции. Реакции замещения. Ряд активности металлов, его использование для прогнозирования возможности протекания реакций между металлами и кислотами, реакций вытеснения одних металлов из растворов их солей другими металлами. Реакции обмена. Реакции нейтрализации. Условия протекания реакций обмена в растворах до конца.

Типы химических реакций на примере свойств воды. Реакция разложения - электролиз воды. Реакции соединения - взаимодействие воды с оксидами металлов и неметаллов. Условие взаимодействия оксидов металлов и неметаллов с водой. Понятие «гидроксиды». Реакции замещения - взаимодействие воды металлами. Реакции обмена - гидролиз веществ.

Демонстрации. Примеры физических явлений: а) плавление парафина; б) возгонка йода или бензойной кислоты; в) растворение окрашенных солей; г) диффузия душистых веществ с горящей лампочки накаливания. Примеры химических явлений: а) горение магния, фосфора; б) взаимодействие соляной кислоты с мрамором или мелом; в) получение гидроксида меди (II); г) растворение полученного гидроксида в кислотах; д) взаимодействие оксида меди (II) с серной кислотой при нагревании; е) разложение перманганата калия; ж) разложение пероксида водорода с помощью диокстда марганца и каталазы картофеля или моркови; з) взаимодействие разбавленных кислот с металлами.

Лабораторные опыты. 16. Прокаливание меди в пламени спиртовки. 17. Замещение меди в растворе хлорида меди (II) железом.

Тема 5. Практикум № 1. Простейшие операции с веществом.

1. Правила техники безопасности при работе в химическом кабинете. Приемы обращения с лабораторным оборудованием и нагревательными приборами. 2. Наблюдения за изменениями, происходящими с горящей свечой, и их описание (домашний эксперимент). 3. Анализ почвы и воды (домашний эксперимент). 4. Признаки химических реакций. 5. Приготовление раствора сахара и расчет его массовой доли в растворе.

Тема 6. Растворение. Растворы. Свойства растворов электролитов.

Растворение как физико-химический процесс. Понятие о гидратах и кристаллогидратах. Растворимость. Кривые растворимости как модель зависимости растворимости твердых веществ от температуры. Насыщенные, ненасыщенные и пересыщенные растворы. Значение растворов для природы и сельского хозяйства.

Понятие об электролитической диссоциации. Электролиты и неэлектролиты. Механизм диссоциации электролитов с различным типом химической связи. Степень электролитической диссоциации. Сильные и слабые электролиты.

Основные положения теории электролитической диссоциации. Ионные уравнения реакции. Реакции обмена, идущие до конца.

Классификация ионов и их свойства.

Кислоты, их классификация. Диссоциация кислот и их свойства в свете теории электролитической диссоциации. Молекулярные и ионные уравнения реакций. Взаимодействие кислот с металлами. Электрохимический ряд напряжений металлов. Взаимодействие кислот с оксидами металлов. Взаимодействие кислот с основаниями реакция нейтрализации. Взаимодействие кислот с солями. Использование таблицы растворимости для характеристики химических свойств кислот.

Основания, их классификация. Диссоциация оснований и их свойства в свете теории электролитической диссоциации. Взаимодействие оснований с солями. Использование таблицы растворимости для характеристики химических свойств оснований. Взаимодействие щелочей с оксидами неметаллов.

Соли, их классификация и свойства в свете теории электролитической диссоциации. Взаимодействие солей с металлами, особенности этих реакций. Взаимодействие солей с солями. Использование таблицы растворимости для характеристики химических свойств солей.

Обобщение сведений об оксидах, их классификации и свойствах.

Генетические ряды металла и неметалла. Генетическая связь между классами неорганических веществ.

Окислительно-восстановительные реакции.

Определение степеней окисления для элементов, образующих вещества разных классов. Реакции ионного обмена и окислительно-восстановительные реакции. Окислитель и восстановитель, окисление и восстановление.

Составление уравнений окислительно-восстановительных реакций методом электронного баланса.

Свойства простых веществ – металлов и неметаллов, кислот и солей в свете окислительно-восстановительных реакций.

Демонстрации. Испытание веществ и их растворов на электропроводность. Зависимость электропроводности уксусной кислоты от концентрации. Движение окрашенных ионов в электрическом поле. Взаимодействие цинка с серой, соляной кислотой, хлоридом меди (II). Горение магния. Взаимодействие хлорной и сероводородной воды.

Лабораторные опыты. 18. Взаимодействие растворов хлорида натрия и нитрата серебра. 19. Получение нерастворимого гидроксида и взаимодействие его с кислотами. 20. Взаимодействие кислот с основаниями. 21. Взаимодействие кислот с оксидами металлов. 22. Взаимодействие кислот с солями. 24. Взаимодействие щелочей с кислотами. 25. Взаимодействие щелочей с оксидами неметаллов. 26. Взаимодействие шелочей с солями. 27. Получение и свойства нерастворимых оснований. 28. Взаимодействие основных оксидов с кислотами. 29. Взаимодействие основных оксидов с кислотами. 29. Взаимодействие основных оксидов с водой. 30. Взаимодействие кислотных оксидов с кислотами. 31. Взаимодействие кислотных оксидов с водой. 32. Взаимодействие солей с кислотами. 33. Взаимодействие солей с ощелочами. 34. Взаимодействие солей с солями. 35. Взаимодействие растворов солей с металлами.

Тема 7. Практикум № 2. Свойства растворов электролитов.

6. Решение экспериментальных задач.

Тематическое планирование

Тема	Количество часов
Введение.	4
Тема 1. Атомы химических элементов.	9
Тема 2. Простые вещества.	6
Тема 3. Соединения химических элементов.	15
Тема 4. Изменения, происходящие с веществами.	12
Тема 5. Практикум № 1.	3
Простейшие операции с веществом.	
Тема 6. Растворение. Растворы. Свойства растворов электролитов.	16
Тема 7. Практикум № 2.	1
Свойства растворов электролитов.	
Резервное время - повторение и обобщение.	2

Календарно - тематическое планирование учебного материала по химии

№ урока	Название раздела и темы	Дата проведения по плану / факт	Примечание (описание причин корректиров ки дат)
1	Предмет химии. Вещества.	02.09.	ки дату
2	Превращения веществ. Роль химии в жизни человека. Краткие сведения по истории развития химии. Основоположники отечественной химии.	07.09.	
3	Знаки (символы) химических элементов. Таблица Д.И.Менделеева.	09.09.	
4	Химические формулы. Относительная атомная и молекулярная массы. Массовая доля элемента в соединении.	14.09.	
5	Основные сведения о строении атомов. Состав атомных ядер: протоны и нейтроны. Изотопы.	16.09.	
6	Электроны. Строение электронных оболочек атомов элементов № 1-20 в таблице Д.И.Менделеева.	21.09.	
7	Металлические и неметаллические свойства элементов. Изменение свойств химических элементов по группам и периодам.	23.09.	
8	Ионная химическая связь.	28.09.	
9	Ковалентная неполярная химическая связь.	30.09.	
10 11	Электроотрицательность. Ковалентная полярная химическая связь. Металлическая химическая связь.	05.10. 07.10.	

	Обобщение и систематизация знаний по	12.10.
12	теме «Атомы химических элементов».	
	Контрольная работа по теме: «Атомы	14.10.
13	химических элементов».	
14	Простые вещества – металлы.	19.10.
15	Простые вещества – неметаллы, их	21.10.
	сравнение с металлами. Аллотропия.	
16	Количество вещества.	26.10.
17	Молярный объем газообразных веществ.	28.10.
18	Решение задач с использование понятий	09.11.
	«количество вещества», «постоянная	
	Авогадро», «молярная масса», «молярный	
	объем газов».	
19	Обобщение и систематизация знаний по	11.11.
	теме: «Простые вещества».	
20	Степень окисления. Основы номенклатуры	16.11.
	бинарных соединений.	
21-22	Оксиды.	18.11.
		23.11.
23-24	Основания.	25.11.
		30.11.
25-26	Кислоты.	02.12.
		07.12.
27-28	Соли как производные кислот и оснований.	09.12.
		14.12.
29	Аморфные и кристаллические вещества.	16.12.
30	Обобщение и систематизация знаний по	21.12.
	теме «Соединения химических элементов».	
	Подготовка к контрольной работе.	
31	Контрольная работа по теме «Соединения	23.12.
22	химических элементов».	20.12
32	Чистые вещества и смеси. Массовая и	28.12.
22	объемная доли компонентов в смеси.	11.01
33	Расчеты, связанные с понятием «доля».	11.01.
2.4	Решение задач.	12.01
34	Обобщение и систематизация знаний по	13.01.
25	теме «Соединения химических элементов».	10.01
35	Физические явления. Разделение смесей.	18.01.
36	Химические явления. Условия и признаки	20.01.
27	протекания химических реакций.	25.01
37	Закон сохранения массы веществ.	25.01.
20.20	Химические уравнения.	27.01
38-39	Расчеты по химическим уравнениям.	27.01.
40	Decrease accompany	01.02.
40	Реакции разложения. Понятие о скорости	03.02.

41 I	химической реакции и катализаторах. Реакции соединения. Цепочки переходов.	08.02.
		10.02.
	Реакции замещения. Ряд активности	10.02.
	металлов.	15.02
	Реакции обмена. Правило Бертолле.	15.02.
	Гипы химических реакций на примере	17.02.
	свойств воды. Понятие о гидролизе.	
45	Обобщение и систематизация знаний по	22.02.
Г	геме « Изменения, происходящие с	
F	веществами».	
46 I	Контрольная работа по теме «Изменения,	24.02.
I	происходящие с веществами».	
47	Практическая работа № 1.	01.03.
I	Правила техники безопасности при работе в	
У	химическом кабинете. Приемы обращения с	
J	пабораторным оборудованием и	
I	нагревательными приборами.	
48 1	Практическая работа № 2.	03.03.
I	Признаки химических реакций.	
49 1	Практическая работа № 3.	10.03.
	Приготовление раствора сахара и	
	определение массовой доли его в растворе.	
	Растворение как физико-химический	15.03.
1	процесс. Растворимость. Типы растворов.	
	Электролитическая диссоциация.	
	Основные положения теории	17.03.
	электролитической диссоциации. Ионные	1,100.
	уравнения реакций.	
	Кислоты: классификация и свойства в свете	22.03.
	ГЭД.	24.03.
	194.	05.04.
55-56 (Оспорания: классификация и сройства в	07.04.
	Основания: классификация и свойства в свете ТЭД.	12.04.
		14.04.
31-38	Оксиды: классификация и свойства.	19.04.
50.60	Communication	
	Соли: классификация и свойства в свете	21.04.
	ГЭД.	26.04.
	Генетическая связь между классами	28.04.
	неорганических веществ.	07.07
	Обобщение и систематизация знаний по	05.05.
	геме «Растворение. Растворы. Свойства	
	растворов электролитов».	
	Контрольная работа по теме «Растворение.	12.05.
l I	Растворы. Свойства растворов	
	электролитов».	

64	Классификация химических реакций.	17.05.
	Окислительно-восстановительные реакции.	
65	Промежуточная аттестация (тестовая	19.05.
	работа).	
66	Свойства изученных классов веществ в	24.05.
	свете окислительно-восстановительных	
	реакций.	
67	Практическая работа № 4.	26.05.
	Решение экспериментальных задач.	
68	Обобщающий урок. Решение задач и	31.05.
	упражнений.	